Chem. Ber. 112, 3376-3389 (1979)

Übergangsmetallketen-Verbindungen, VI¹⁾

Übergangsmetall-substituierte Ketene von Molybdän und Wolfram – Darstellung, Reaktivität und spektroskopische Untersuchung

Wolfgang Uedelhoven, Karl Eberl und Fritz Roland Kreißl*

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 23. Januar 1979

Metallsubstituierte Ketene von Molybdän und Wolfram $(\eta^5 - C_5H_5)(CO)[P(CH_3)_3]_2MC(CO)R$ 2d, 4a, b, e (R = CH₃, 1-Cyclopenten-1-yl, C₆H₄CH₃-(4), Si(C₆H₅)₃) entstehen bei der Umsetzung der Dicarbonyl(η^5 -cyclopentadienyl)carbin-Komplexe 1d, 3a, b, e mit Trimethylphosphan. In einer reversiblen Reaktion spalten sie Phosphan ab und gehen hierbei in die η^2 -Ketenylverbindungen 5d, 6a, b, e über. Diese addieren Kohlenmonoxid, wobei sich dicarbonylsubstituierte η^1 -Ketene der allgemeinen Art (η^5 -C₅H₅)(CO)₂[P(CH₃)₃]MC(CO)R (7d, 8a-g, R = CH₃, 1-Cyclopenten-1-yl, C₆H₅, C₆H₄CH₃-(4), Si(C₆H₅)₃, C₅H₄FeC₅H₅, C₆H₂(CH₃)₃-(2,4,6)) bilden. 7d und 8d sind ferner noch durch direkte Carbonylierung von (η^5 -C₅H₅)(CO)[P(CH₃)₃]M = C - C₆H₄CH₃-(4) (9d und 10d) zugänglich. Die diamagnetischen, teilweise sehr thermolabilen Komplexe werden durch IR-, ¹H-, ¹³C- und ³¹P-NMR-Spektren gesichert.

Transition Metal Ketene Compounds, VI¹⁾

Transition Metal-Substituted Ketenes of Molybdenum and Tungsten – Preparation, Reactivity, and Spectroscopic Investigations

Metal-substituted ketenes of molybdenum and tungsten $(\eta^{5}-C_{5}H_{5})(CO)[P(CH_{3})_{3}]_{2}MC(CO)R$ 2d, 4a, b, e (R = CH₃, 1-cyclopenten-1-yl, C₆H₄CH₃-(4), Si(C₆H₅)₃) are formed on treatment of dicarbonyl(η^{5} -cyclopentadienyl)carbyne complexes 1d, 3a, b, e with trimethylphosphine. The cleavage of one phosphine ligand leads in a reversible reaction to η^{2} -ketenyl compounds ($\eta^{5}-C_{5}H_{5}$)(CO)[P(CH₃)₃]M[O···C···C-R]5d, 6a, b, e. They add carbon monoxide to give dicarbonyl substituted η^{1} -ketenes ($\eta^{5}-C_{5}H_{5}$)(CO)₂[P(CH₃)₃]MC(CO)R (7d, 8a-g, R = CH₃, 1-cyclopenten-1-yl, C₆H₅, C₆H₄CH₃-(4), Si(C₆H₅)₃, C₅H₄FeC₅H₅, C₆H₂(CH₃)₃-(2,4,6)). 7d and 8d are also available by direct carbonylation of ($\eta^{5}-C_{5}H_{5}$)(CO)[P(CH₃)₃]M \equiv C-C₆H₄CH₃-(4). The diamagnetic compounds, some of which are very thermolabile, were characterized by IR, ¹H, ¹³C, and ³¹P NMR spectroscopy.

Die Chemie der Übergangsmetallketen-Komplexe erfährt in jüngster Zeit eine zunehmende Ausweitung. Nach der Synthese erster $Bis(\eta^5$ -cyclopentadienyl)(η^2 -diphenylketen)-Komplexe von Titan und Vanadin durch *Sonogashira* et al.²⁾ folgte später die Darstellung weiterer Ketenkomplexe von Platin, Mangan und Nickel³⁻⁵⁾. Im Gegensatz hierzu liegt in den Ketenidkomplexen der allgemeinen Art M₂C=C=O (M = Cu, Ag, Au) die Ketengruppierung endständig gebunden vor⁶⁻⁹⁾. Bei den vor kurzem beschrie-

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

0009-2940/79/1010-3376 \$ 02.50/0

benen $(\eta^5 - C_5H_5)(CO)[P(CH_3)_3]_2WC(CO)R$ -Komplexen^{10,11} gelang erstmals die Fixierung der Ketenfunktion mit einer σ -Bindung. In den η^2 -Verbindungen $(\eta^5 - C_5H_5)(CO) [P(CH_3)_3]W(O = C = C - R)$ erfolgt die Stabilisierung zusätzlich durch eine π -Bindung^{11,12}. Bei den letztgenannten η^1 - und η^2 -Ketenylverbindungen ermöglicht die gezielte Variation des Zentralmetalls, der Liganden und des Ketensubstituenten R eine weiterführende Untersuchung der präparativen und spektroskopischen Eigenschaften.

Darstellung und Eigenschaften

Die Umsetzung neuer, zum Teil erstmals dargestellter und charakterisierter Carbin-(dicarbonyl)(η⁵-cyclopentadienyl)-Komplexe von Molybdän und Wolfram^{13,14}) mit Trimethylphosphan führt unter Farbaufhellung der Reaktionslösung zu metallsubstituierten Ketenen^{10,11}.

Die neuen Verbindungen 2a, d, 4a, b, e fallen als gelbe, diamagnetische Kristalle an, welche sich in Aceton oder Dichlormethan gut, in Pentan und Ether hingegen nicht lösen. Bei Raumtemperatur spalten sie rasch ein Molekül Trimethylphosphan ab und gehen hierbei in η^2 -Ketenylkomplexe 5, 6 über.

 $(\eta^{5}-C_{5}H_{5})(CO)_{2}M\equiv C-R + 2P(CH_{3})_{3} \longrightarrow (\eta^{5}-C_{5}H_{5})(CO)[P(CH_{3})_{3}]_{2}M-C_{R}^{<CO} R$ $[a, d: M = Mo \\ 3a, b, e: M = W$ $2a, d: M = Mo \\ 4a, b, e: M = W$ $(q^{5}-C_{5}H_{7}-(1)^{*}) C_{6}H_{5} C_{6}H_{4}CH_{3}-(4) Si(C_{6}H_{5})_{3}$ $(q^{5}-C_{5}H_{5})(CO)[P(CH_{3})_{3}]M[O=C=C=C-R] + P(CH_{3})_{3}$ $(q^{5}-C_{5}H_{5})(CO)[P(CH_{3})_{3}]M[O=C=C=C-R] + P(CH_{3})_{3}$ $Sa, d: M = Mo \\ 6a, b, e: M = W$ $(q^{5}-C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M-C=C=CO \\ R = W$

Die orangen (5a, 6a, b) bis violetten (5d, 6e) Keten-Vertreter zeigen mit η^1 -Verbindungen vergleichbare Lösungseigenschaften, sind jedoch sowohl in Substanz als auch in Lösung wesentlich beständiger. In Umkehrung obiger Reaktionsgleichung gehen sie unter Phosphan-Addition wieder in die η^1 -Ketene 2a, d; 4a, b, e über.

Im Gegensatz zu den Wolframketenen 4a, b, e lassen sich die Molybdänverbindungen 2a, d und 5a, d auf die beschriebene Weise nicht analysenrein gewinnen; vielmehr erhält

man stets ein Gemisch wechselnder Zusammensetzung aus 2a/5a bzw. 2d/5d. Die Reindarstellung von 2d gelingt jedoch durch Phosphan-Addition an 5d.

Die Untersuchung des Reaktionsverhaltens und der spektroskopischen Eigenschaften stößt bei den η^1 -Ketenylverbindungen **2**, **4** (η^5 -C₅H₅)(CO)[P(CH₃)₃]₂MC(CO)R (M = Mo, W), [R = CH₃, C₅H₇-(1), C₆H₅¹¹), C₆H₄CH₃-(4)¹¹), Si(C₆H₅)₃, C₅H₄FeC₅H₅¹¹), aufgrund ihrer ausgeprägten Thermolabilität bisher auf große Schwierigkeiten. Der Ersatz eines Trimethylphosphan- durch einen Carbonylliganden sollte wegen dessen geringerem σ -Donor/ π -Akzeptorverhältnis zu einer Stabilisierung der Komplexe führen. Als Ausgangsverbindungen eignen sich dazu die gegenüber Nucleophilen sehr reaktiven η^2 -Ketene **5**, **6**, welche mit einer vom Zentralmetall und Substituenten rein qualitativ abhängigen Geschwindigkeit unter Druck Kohlenmonoxid addieren. Der geringere Raumbedarf von CO erlaubt die Darstellung eines mesitylsubstituierten η^1 -Ketens. Diese Reaktion schlägt bisher mit Trimethylphosphan als Nucleophil fehl.

Die η^1 -Ketene 7,8 erhält man in Form gelber, diamagnetischer Kristalle. Wie die vergleichbaren Verbindungen 2 und 4 lösen sie sich nur in polaren Solventien. Die Rückreaktion zum η^2 -Ketenyl-Komplex bedarf im Gegensatz zu den η^1 -Ketenen 2a, d und 4a – f einer stärkeren thermischen Belastung. Sie ermöglicht die Reindarstellung von 5d.

Bei der Bildung von 2d und 4d fallen in einer Nebenreaktion Carbonyl(η^{5} -cyclopentadienyl)(4-methylphenylcarbin)(trimethylphosphan)-Komplexe¹³⁾ von Molybdän (9d) und Wolfram (10d) an. Sie führen unter Addition zweier Kohlenmonoxidmoleküle direkt zu metallsubstituierten η^{1} -Ketenen (7d, 8d)¹⁵⁾.

$$(\eta^{5} - C_{5}H_{5})(CO)[P(CH_{3})_{3}]M \equiv C - C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]M - C \xrightarrow{C \in O} C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2 CO} (\eta^{5} - C_{6}H_{4}CH_{3} - (4) \xrightarrow{* 2$$

Diese Carbonylierung eignet sich ausgezeichnet zur Reindarstellung der Molybdänverbindung 7d und zur Einführung von ¹³C-markierten Carbonylgruppen am Zentralmetall und in der Keteneinheit¹⁶).

Spektroskopischer Teil

1. IR-Spektren

Die Lösungsspektren (Tab. 1) der η^2 -Ketenylverbindungen **5d** und **6a**, **b**, **e** zeigen im vCO-Bereich jeweils zwei Absorptionen, deren Lage und Intensität mit den bereits beschriebenen Vertretern¹¹⁾ vergleichbar sind. Die Variation des Zentralmetalls bzw. des Substituenten R wirkt sich nur geringfügig auf die Schwingungsfrequenzen aus.

Die IR-Spektren der bis(trimethylphosphan)-substituierten η^1 -Ketene **2d**, **4a**, **b**, **e** weichen ebenfalls kaum von denen bereits beschriebener η^1 -Ketene ab¹¹). Ihre KetenvCO-Schwingung findet sich zwischen 2018 und 1990 cm⁻¹, die Metall-vCO-Absorption tritt im Bereich von 1784 und 1760 cm⁻¹ auf.

Erste Hinweise auf die Ligandenanordnung am Zentralmetall der neuartigen Verbindungen $(\eta^{5}-C_{5}H_{5})(CO)_{2}[P(CH_{3})_{3}]MC(CO)R$ 7d und 8a-g liefern die IR-Spektren (Tab. 1). Für 8d beobachtet man im vCO-Bereich bei 2025 cm⁻¹ eine sehr starke Schwin-

Komplex	$\nu CO_{K_{cien}}$	vCO_{Metall}	Komplex	$v \operatorname{CO}_{Keien}$	$v CO_{Metall}$	
2 d	2008 vs	1784 s	7 d	2029 s	1943 m	1855 vs
4a	2018 vs	1771 s	8a	20 3 4 s	1924 m	1832 vs
4 b	1996 vs	1765 s	8 b	2025 s	1936 m	1838 vs
4e	1990 vs	1760 s	8c	2041 s	1942 m	1847 vs
5d	1720 s	1887 vs	8 d	2025 s	1931 m	1835 vs
6a	1700 s	1878 vs	8e	2026 s	1934 m	1842 vs
6 b	1698 s	1883 vs	8f	2035 s	1938 m	1842 vs
6e	1700 s	1874 vs	8g	2026 s	1926 m	1836 vs

Tab. 1. IR-Absorptionen der η^1 - und η^2 -Ketenylverbindungen in Dichlormethan (in cm⁻¹) im v_{co}-Bereich

gung, die aufgrund von Sekundärreaktionen^{1,16)} der Keten-CO-Gruppierung zugeordnet werden muß. Das Instensitätsverhältnis der restlichen zwei Metallcarbonylresonanzen (1931 m, 1835 vs cm⁻¹) deutet auf eine *trans*-Stellung beider Carbonylliganden hin.

2. ¹H-NMR-Spektren

Von den drei verschiedenen Ketentypen wird jeweils als Beispiel der methylsubstituierte Vertreter diskutiert. Für den η^2 -Ketenylkomplex **6a** erhält man drei Signale mit den relativen Intensitäten 5:3:9, die zwanglos den Cyclopentadienyl- ($\delta = 5.70$), den

Tab. 2. ¹H-NMR-Chemische Verschiebungen der η^{1} - und η^{2} -Ketenverbindungen in $CD_{2}Cl_{2}$. δ relativ $CDHCl_{2} = 5.40$ ppm. Intensitäten, Multiplizitäten und Kopplungskonstanten in Hz in Klammern

Verb.	$H_{aromat./olef.}$	$M - C_5 H_5$	H _{aik.}	PCH ₃	T (°C)
2 d	7.06 (4, s)	4.93 (5, t/1.9)	2.23 (3, s)	1.41 (18, t/8.1)	-60
4 a		4.95 (5, t/2.0)	1.56 (3, s)	1.49 (18, t/8.6)	-40
4 b	4.76 (1, m)	5.05 (5, t/2.2)	1.79 – 2.36 (6, m)	1.47 (18, t/9.0)	-40
4 e	7.75 (15, m)	4.17 (5, t/1.9)		1.52 (18, t/6.9)	-40
5d	7.62 (4, m)	5.75 (5, d/1.5)	2.40 (3, s)	1.29 (9, d/9.6)	-20
6a		5.70 (5, d/2.2)	2.98 (3, d/2.2)	1.53 (9, d/10.0)	-20
6 b	6.13 (1, m)	5.71 (5, d/br)	1.95-2.70 (6, m)	1.39 (9, d/9.8)	-20
6 e	7.64 (15, s)	5.06 (5, d/br)		1.42 (9, d/11.4)	-20
7 d	7.13 (4, s)	5.26 (5, d/2.3)	2.31 (3, s)	1.67 (9, d/9.2)	-20
8 a		5.25 (5, d/2.2)	1.73 (3, s)	1.74 (9, d/9.2)	-20
8 b	5.05 (1, s)	5.28 (5, d/2.2)	2.35 (6, d/8.0)	1.66 (9, d/9.5)	-20
8 c	7.52 (5, s)	5.60 (5, d/2.4)		2.03 (9, d/9.6)	-20
8 d	7.14 (4, s)	5.35 (5, d/2.2)	2.33 (3, s)	1.78 (9, d/9.2)	-20
8e	7.84 (9, m) 7.56 (6, m)	5.09 (5, d/2.5)		1.61 (9, d/9.3)	-20
8f	3.83 (5, s) 3.77 (4, m)	5.07 (5, d/2.2)		1.42 (9, d/9.5)	- 20
8 g	6.75 (2, s)	5.06 (5, d/2.4)	2.09 (3, s) 2.06 (6, s)	1.52 (9, d/9.8)	-20

Methyl- ($\delta = 2.98$) und den *P*-Methylprotonen ($\delta = 1.53$) zugeordnet werden können. Alle drei Resonanzen erfahren infolge einer ³¹P-¹H-Wechselwirkung eine Aufspaltung in Dubletts (J = 2.2, 2.2 bzw. 10.0 Hz).

Die Addition von Trimethylphosphan an das Zentralmetall führt bei der η^1 -Keten-Verbindung **4a** zu einer Aufspaltung des Cyclopentadienylsignals bei $\delta = 4.95$ in ein Triplett mit J = 2.0 Hz. Die Methylprotonen erscheinen nun als Singulett bei $\delta = 1.56$, während man für die *P*-Methylprotonen bei $\delta = 1.49$ das zu erwartende Bild eines A₉XX'A'₉-Systems mit N = 8.6 Hz erhält¹⁷.

Die Substitution eines Trimethylphosphanliganden in **4a** durch Kohlenmonoxid geht mit einer schwachen paramagnetischen Verschiebung $\Delta \delta \approx 0.2$ sämtlicher Signale (Tab. 2) einher, welche auf eine geringere Donoreigenschaft des neu eintretenden CO-Liganden und eine geänderte Geometrie am Zentralmetall zurückzuführen ist. Das Signal des verbleibenden Trimethylphosphan-Liganden erscheint in **8a** wie das des Cyclopentadienylliganden nun als Dublett bei $\delta = 1.74$ bzw. 5.25 (J = 9.2 bzw. 2.2 Hz), während man für die Methylprotonen ein Singulett bei $\delta = 1.73$ beobachtet.

3. ¹³C-NMR-Spektren

Die Konstitutionen der η^1 - und η^2 -Ketenylverbindungen '5d und 6a, b lassen sich anhand der ¹³C-NMR-Daten absichern. Die chemischen Verschiebungen sind zusammen mit den zugehörigen Kopplungskonstanten in Tab. 3 aufgeführt.

Stellvertretend für sämtliche Ketene soll wiederum das jeweilige Methylderivat diskutiert werden. Der η^2 -Komplex **6a** zeigt in Dichlormethan sechs Signale, die dem Metallcarbonyl- ($\delta = 230.33$), dem terminalen ($\delta = 204.22$) und dem zentralen Ketenkohlenstoff ($\delta = 202.82$), dem Cyclopentadienylliganden ($\delta = 93.43$), der Methylgruppe ($\delta =$ 24.27) und den *P*-Methylkohlenstoffatomen ($\delta = 21.47$) entsprechen. Die Zuordnung beider Signale der Ketenylgruppierung erfolgt in Anlehnung an bereits beschriebene η^2 -Ketenylkomplexe¹¹), bei welchen lediglich für das terminale Keten-C-Atom eine ${}^2J({}^{31}P^{-13}C)$ -Wechselwirkung beobachtet werden konnte; sie beträgt bei **6a** 4.9 Hz. Eine ${}^{31}P^{-13}C$ -Kopplung zeigen auch die Metallcarbonyl- und die Trimethylphosphan-Kohlenstoffatome mit 9.8 bzw. 34.2 Hz.

Die Addition eines Trimethylphosphan-Moleküls an **6a** führt unter Öffnung des Metall-Kohlenstoffdreiringes zum η^1 -Keten **4a**. Hierbei erfährt das Signal des Carbonylliganden eine paramagnetische Verschiebung von ca. 17 ppm und erscheint nun mit einer Kopplungskonstante von 20.8 Hz bei $\delta = 247.70$. Die restlichen Resonanzen werden unterschiedlich stark entschirmt, wobei das terminale Keten-C-Atom als Triplett (²J = 17.1 Hz) mit $\delta = -14.78$ bei ungewöhnlich hohen Feldstärken und das zentrale Keten-C-Atom als Singulett bei $\delta = 167.00$ gefunden wird. Hervorzuheben ist die Signalform der Phosphan-Kohlenstoffatome, deren Pseudotriplett mit N = 29.3 Hz das Aufspaltungsmuster eines A₃XX'-Systems zeigt¹⁸).

Der formale Austausch einer Trimethylphosphan- in **4a** gegen eine Carbonylgruppe spiegelt sich in einer Änderung der Multiplizität sowie in einer meist diamagnetischen Verschiebung der ¹³C-Resonanzen wider. Die Phosphan-Kohlenstoffatome in **8a** finden sich nun als Dublett (²J = 34.2 Hz) bei δ = 20.39 und gleichen in ihrer chemischen Verschiebung und ihrer ³¹P-¹³C-Wechselwirkung denjenigen von **6a**. Für die Cyclopenta-

	мсо	Keten-CO	Keten-C		Ср	C _{Aik}	РСН3	T(°C)
2 d	255.04 (24.4) ^{a)}	159.78	10.90 (14.7) ^{a)}	140.90; 130.97; 130.32; 128.60	89.65	20.93	18.34 (24.4) ^{b)}	-30
4 a	247.70 (20.8) ^{a)}	167.00	- 14.78 (17.1) ^{a)}		87.52	20.50	16.94 (29.3) ^{b)}	0
4b	244.46 (19.5) ^{a)}	166.90	3.45 (14.7) ^{a)}	143.05; 121.37	86.63	38.51, 32.80 24.71	17.69 (29.3) ^{b)}	- 50
5d	238.64 (14.7) ^{a)}	209.29	218.36 (9.8) ^{a)}	139.17; 137.01; 129.78; 126.12	94.61	21.58	20.23 (31.7) ^{b)}	-20
6a	230.33 (9.8) ^{a)}	202.82	204.22 (4.9) ^{a)}		93.43	24.27	21.47 (34.2) ^{b)}	-20
7 d	232.00 (26.9) ^{a)}	155.03	-5.12 (7.3) ^{a)}	137.01; 131.29; 129.24; 129.03	92.78	21.04	19.90 (31.7) ^{b)}	- 40
8a	225.96 (17.1) ^{a)}	157.62	- 32.85 (7.3) ^{a)}		90.62	15.86	20.39 (34.2) ^{b)}	-20
8b	224.72 (19.5) ^{a)}	159.45	- 17.32 7.3) ^{a)}	140.25; 121.58	90.62	38.08, 33.01 24.81	19.80 (36.6) ^{b)}	-40
8c	224.07 (19.5) ^{a)}	159.61	-14.83 (7.3) ^{a)}	140.79; 129.24; 128.27; 121.69	90.95		19.63 (34.2) ^{ы)}	- 40
8 d	224.13 (17.1) ^{a)}	156.43	-15.27 (7.3) ^{a)}	137.34; 131.19; 129.14	90.95	20.93	19.63 (34.2) ^{b)}	-50
8e	229.36 (19.5) ^{a)} (163.6) ^{c)}	152.98	-49.68 (7.3) ^{a)} (48.8) ^{c)}	137.34; 135.83; 129.14; 127.63	90.51		19.47 (36.6) ^{b)}	- 50
8g	227.90 (17.1) ^{a)}	152.76	-26.38 (7.3) ^{a)}	138.63; 134.53; 133.56; 127.84	90.95	22.01	20.17 (34.2) ^{b)}	-40

Tab. 3. ¹³C-NMR-Spektren der η^1 - und η^2 -Ketenylverbindungen in CD_2Cl_2 . Chemische Verschiebungen relat. $CD_2Cl_2 = 54.16 \text{ ppm}$

^{a)} = ${}^{2}J({}^{31}P{}^{-13}C)$. $-{}^{b)} = {}^{1}J({}^{31}P{}^{-13}C)$. $-{}^{c)} = {}^{1}J({}^{183}W{}^{-13}C)$.

dienyl- bzw. die Methylgruppe beobachtet man jeweils ein Singulett bei $\delta = 90.62$ bzw. 15.86. Im Unterschied zum bis(trimethylphosphan)-substituierten Keten **4a** erfahren das Metallcarbonyl- sowie das zentrale Keten-C-Atom eine signifikante diamagnetische Verschiebung und erscheinen nun bei $\delta = 225.96$ bzw. 157.62. Besonderes Interesse beansprucht die für ein sp²-hybridisiertes C-Atom ungewöhnlich hohe Abschirmung des terminalen Keten-C-Atoms. Die im Vergleich zu Diphenylketen erfolgende diamagnetische Verschiebung um $\Delta \delta = 70^{19, 20}$ ist vornehmlich auf den Einfluß des Dicarbonyl- $(\eta^{5}$ -cyclopentadienyl)(trimethylphosphan)metall-Fragmentes zurückzuführen.

In der Reihe **8a** – g fällt die im Vergleich zu den alkyl- und arylsubstituierten Ketenen **8a** – d, f, g zusätzlich erfolgte Hochfeldverschiebung des terminalen Keten-C-Atoms im Silylderivat **8e** ($\delta = -49.68$) auf. Eine solche abschirmende Wirkung eines Silylsubstituenten wird lediglich bei sp³-Kohlenstoffatomen²¹⁾ und im freien Keten²²⁾ beobachtet. Im Gegensatz hierzu führt die SiR₃-Gruppe bei sp²-hybridisierten Kohlenstoffatomen in Vinyl-²³⁾ und Cyclopentadienyl-Verbindungen²⁴⁾ sowie Übergangsmetallcarben-Komplexen²⁵⁾ zu einer zum Teil beträchtlichen Entschirmung, ein Effekt, der auch bei sp-Kohlenstoff-Atomen in Acetylenen^{26, 27)} und Carbinkomplexen^{14, 28)} auftritt.

4. ³¹P-NMR-Spektren

Die ³¹P-{¹H}-NMR-Spektren (CD₂Cl₂) der η^{1} - und η^{2} -Ketenylverbindungen zeigen jeweils ein scharfes Singulett (Tab. 4), wobei die Resonanzen der Wolframvertreter aufgrund des Schwermetalleffekts²⁹⁾ bei höheren Feldstärken liegen als die der entsprechenden Molybdänkomplexe.

Tab. 4. ³¹P-NMR-Spektren und ¹⁸³W.³¹P-Kopplungskonstanten (in Hz) der η^1 - und η^2 -Ketenylverbindungen (chem. Verschiebung bez. auf ext. H₃PO₄, in CD₂Cl₂)

Verb.	δ	${}^{1}J({}^{183}W-{}^{31}P)$	<i>T</i> (° C)	Verb.	δ	$^{1}J(^{183}W-^{31}P)$	<i>T</i> (°C)
2 d	15.41		-60	7 d	19.18		-60
4 a	-16.42	235.0	-60	8a	- 17.76	180.1	-60
4 b	-18.9 3	225.8	-60	8 b	-16.42	177.0	- 40
4e	-18.93	222.8	-60	8c	-16.25	174.0	- 50
5d	15.41		-20	8 d	- 14.99	174.0	-60
6a	-11.98	415.0	-20	8e	-13.82	180.1	-60
6b	-13.15	418.1	-20	8f	- 18.76	171.6	+25
6e	11.31	405.9	-20	8 g	- 16.75	192.3	- 50

Die in den Spektren der Wolframverbindungen zusätzlich auftretenden Satelliten resultieren aus einer Wechselwirkung des Phosphorkerns mit dem Wolfram-Isotop ¹⁸³W. Die Kopplungskonstante ¹J(W-P) setzt sich nach Ramsey³⁰ aus einem Orbital- (J_{orb}), einem dipolaren (J_{dip}) und einem Kontaktanteil (J_{con}) zusammen. Letzterer beruht auf einer Fermikontakt-Wechselwirkung der Kernspins mit den Spins der Bindungselektronen. Neuere Untersuchungen an (CO)₅W[P(CH₃)₂(C₆H₅)]³¹, LCAO-Rechnungen³² sowie Arbeiten über direkte Kopplungen³³ sprechen für einen dominierenden Einfluß von J_{con} , der durch *McConnells* Formulierung wiedergegeben werden kann³⁴:

$${}^{1}J({}^{183}W-{}^{31}P) \approx |S_{W}(O)|^{2} \cdot |S_{P}(O)|^{2} \cdot ({}^{3}\Delta E)^{-1} \cdot |P_{S(W)S(P)}|^{2}$$

 $|S_{W}(O)|^{2}$ und $|S_{P}(O)|^{2}$ stehen für die Elektronendichte des 6s-Orbitals am Wolfram bzw. des 3s-Orbitals am Phosphor; ${}^{3}\Delta E$ ist die mittlere Triplettanregungsenergie. Der Term $P_{S(W)S(P)}$ enthält sowohl die Bindungsordnung als auch die Polarität der W-P-Bindung.

Unter der vereinfachenden Annahme, daß sich ${}^{3}\Delta E$ nur geringfügig ändert und die Elektronendichte am Phosphor aufgrund vergleichbarer chemischer Verschiebungen annähernd konstant ist, wird die Größe von ${}^{1}J({}^{183}W-{}^{31}P)$ im wesentlichen durch $|S_{W}(O)|^{2}$ und $|P_{S(W)S(P)}|^{2}$ bestimmt.

Der Übergang von den am Zentralmetall dicarbonyl- (8a - g) zu den bis(trimethylphosphan)-substituierten Komplexen (4b - g) geht mit einer Zunahme von ${}^{1}J({}^{183}W{}^{-31}P)$ um 43 bis 60 Hz einher. Da beide Ketentypen eine weitgehend vergleichbare Koordinationssphäre aufweisen, sollte die Änderung vornehmlich auf den $P_{S(W)S(P)}$ -Term zurückzuführen sein. Wie in $[PtCl(PBu_3)_3]^{+35}$ bewirkt ein zum Phosphor *trans*-ständiger Donorligand eine Abnahme von ${}^{1}J({}^{183}W{}^{-31}P)^{36}$.

In den η^2 -Ketenylkomplexen verdoppeln sich die ¹J-Kopplungskonstanten. Diese drastische Zunahme kann schwer mit einer geänderten Bindungsordnung und Polari-

sierung allein erklärt werden; vielmehr ist eine Verminderung der s-Elektronendichte am Wolfram zu diskutieren: Der aus der Abspaltung eines Carbonyl- bzw. Trimethylphosphan-Liganden resultierende Elektronenmangel am Zentralmetall wird offensichtlich selbst durch Inanspruchnahme der Keten-C=C- π -Elektronen nur ungenügend kompensiert.

5. Massenspektren

Unter Anwendung verschiedener Ionisierungsmethoden ist es noch nicht gelungen, für η^1 - und η^2 -Ketene signifikante Massenspektren zu erhalten. Bei der Elektronenstoßionisierung ist der Dampfdruck dieser Verbindungen unter den vorgegebenen Meßbedingungen zu gering, um eine ausreichende Ionenausbeute zu erzeugen. Selbst der Einsatz einer FD-Ionenquelle ermöglicht bisher keine Ionenbildung des unzersetzten Moleküls.

Erwärmt man Proben von η^{1} - bzw. η^{2} -Ketenen innerhalb der Ionenquelle langsam von 50 auf 200°C, so resultiert jeweils ein linienreiches Spektrum, dessen Analyse das Vorhandensein von zwei bzw. drei verschiedenen Substanzen anzeigt. Hierbei wandeln sich 7d und 8e bevorzugt in Carbinkomplexe um (s. Schema 1).

Tab. 5. Massenspektren der Pyrolyseprodukte von η^1 - und η^2 -Ketenylverbindungen

Edukt	Produkte	M ⁺	(M – CO) ⁺	$(M - 2 CO)^+$	Verhältnis	<i>T</i> (° C)
2 d	1 d 9 d	322 370	294 342	266	1 2.0	100
8e	3e 10e	576 624	548 596	520 _	1 7.0	125
5d	1 d 9 d	322 370	294 342	266	1 2.0	100
6a	3a 10a	332 380	304 352	276 _	1 0.8	100
6d	3d 10d	408 456	380 428	352	1 0.8	100
6g	3g 10g	436 484	456	380	1 3.8	100
6e	3e 10e	576 624	548 596	520 _	1 9.1	125

3383

Die η^2 -Ketenkomplexe **5d**, **6a**¹¹, **d**¹¹, **e**¹¹, **g**¹¹, zeigen dasselbe Verhalten. Es ist daher nicht auszuschließen, daß bei der elektronenstoßinduzierten Zersetzung der η^1 -Ketenylverbindungen die η^2 -Ketenkomplexe als Zwischenstufen auftreten. Die wichtigsten *m/e*-Werte sind in Tab. 5 zusammengestellt. Auf eine Angabe von relativen Intensitäten wurde im Hinblick auf das Vorliegen eines Substanzgemisches verzichtet, dessen Zusammensetzung maßgeblich vom Substituenten R beeinflußt wird: Unter einheitlichen Meßbedingungen (Temperatur 100°C, $E_I = 70 \text{ eV}$) treten die Molekül-Ionen der aus den η^2 -Ketenylverbindungen des Wolframs entstehenden Carbinkomplexe η^5 -C₅H₅(CO)-[P(CH₃)₃]WC – R und η^5 -C₅H₅(CO)₂WC – R (R = CH₃, C₆H₄CH₃-(4), C₆H₄OCH₃-(4)¹¹) mit annähernd gleicher Intensität auf. Beim Mesityl- **6g** bzw. Triphenylsilyl-Derivat **6e** findet sich hingegen ein Intensitätsverhältnis von ungefähr 4:1 bzw. 10:1 für die Verbindungen **10g:3g** bzw. **10e:3e**.

Beide Molybdänkomplexe 5d und 7d bilden bevorzugt den trimethylphosphansubstituierten Carbinkomplex. Bei höheren Temperaturen (ab ca. 125 °C) findet man im Spektrum von 7d zusätzlich den Molekülpeak von Dicarbonyl(4-methylphenylethinyl)-(trimethylphosphan)molybdän¹³⁾.

Diskussion

Bei der Addition von Trimethylphosphan bzw. Kohlenmonoxid an η^2 -Ketenyl-Komplexe wird von den möglichen Isomeren jeweils nur dasjenige beobachtet, bei welchem gleiche Liganden *"trans*-Stellung" einnehmen. Die Formen C und D sind bisher bei keinem der beschriebenen Vertreter nachgewiesen worden. Eine Klärung des Reaktionsmechanismus erhoffen wir uns durch den Einsatz neuer Nucleophile mit unterschiedlichem σ -Donor/ π -Akzeptorverhältnis und der Einführung von ¹³C-markiertem Kohlenmonoxid.

Während für (η^5 -C₅H₅)(CO)[P(CH₃)₃]₂WC(CO)R-Komplexe sowohl spektroskopisch als auch röntgenographisch die Konfiguration **A** bewiesen worden ist, erfolgt die Zuordnung bei den neu dargestellten Ketenen **7d**, **8a-g** allein durch schwingungs- und kernresonanzspektroskopische Methoden. Eine aus dem IR-Spektrum sich anbietende "*trans*-Stellung" der beiden Carbonylgruppen (**B**) und damit auch des Trimethylphosphanund des Ketenylliganden zueinander wird durch das ¹³C-NMR-Spektrum bestätigt. Man findet für die beiden Metallcarbonyl-Kohlenstoffatome nur jeweils ein Signal. Die bei **8f** registrierte ²J(¹⁸³W-¹³C)-Kopplung von 163.2 Hz liegt im Bereich der für (η^5 -C₅H₅)(CO)₃W – R gefundenen Werte (J = 161.0 Hz)³⁷⁾ für eine zum Substituenten R *cis*-ständige Carbonylgruppe, während sich für die *trans*-Position ein Wert von 129.5 Hz findet.

Ein Vergleich der für die η^1 -Ketene **2d** und **4a** – **d**¹¹⁾ erhaltenen Keten-CO-Schwingungsfrequenzen und der ¹³C-NMR-chemischen Verschiebung beider Keten-C-Atome mit den entsprechenden Werten der η^1 -Verbindungen **7d** und **8a** – **g** läßt bei letzteren auf ein zunehmendes Gewicht der polaren Grenzform **H** bei der Beschreibung der Bindungsverhältnisse schließen. Der vinylkationischen Grenzstruktur **F** und der unpolaren **E** wird aufgrund dieser Daten keine nennenswerte Bedeutung beigemessen.

Die Bildung von Ketengruppierungen durch Umsetzung von Kohlenmonoxid mit Carben- und Carbinkomplexen ist bisher nur bei wenigen Beispielen beobachtet worden: Ein Gemisch aus Pentacarbonyl(methoxyphenylcarben)chrom und 1-Vinyl-2-pyrrolidon

$$\begin{split} &\mathbb{M}=\mathbb{M}o,\ \mathbb{W};\ \mathbb{R}=\mathbb{C}H_3,\ 1-\text{Cyclopenten-1-yl},\ \mathbb{C}_6\mathbb{H}_5,\ \mathbb{C}_6\mathbb{H}_4\mathbb{C}\mathbb{H}_3-(4),\ \text{Si}(\mathbb{C}_6\mathbb{H}_5)_3,\\ &\mathbb{C}_5\mathbb{H}_4\text{FeC}_5\mathbb{H}_5,\ \mathbb{C}_6\mathbb{H}_2(\mathbb{C}\mathbb{H}_3)_3-(2,4,6) \end{split}$$

--- Reaktionen im Massenspektrometer

reagiert bei 180 bar und 80 °C zu einem hochsubstituierten Vinylketon³⁸⁾, wobei als Zwischenstufe Methoxyphenylketen postuliert wird; andererseits führt die Hochdruckcarbonylierung³⁹⁾ von $(\eta^5-C_5H_5)(CO)_2MnC(C_6H_5)_2$ zu Dicarbonyl $(\eta^5$ -cyclopentadienyl) $(\eta^2$ -diphenylketen)mangan⁴⁾. Im Gegensatz hierzu reagieren (Arylcarbin)carbonyl $(\eta^5$ -cyclopentadienyl) (trimethylphosphan)-Komplexe von Molybdän und Wolfram bereits bei Normaldruck mit Kohlenmonoxid zur η^1 -Ketenylverbindung. Diese Carbonylierungsreaktion von Übergangsmetallcarbin-Komplexen ist als weiterer möglicher Syntheseweg im Gesamtbild metallsubstituierter Ketene in Schema 3 eingereiht.

Wir danken Herrn Professor Dr. E. O. Fischer für die Bereitstellung wertvoller Institutsmittel, Herrn Ing. G. Jakob für die Aufnahme der Massenspektren, den Herren M. Barth und J. Riede für die Durchführung der Elementaranalysen und Herrn Dr. W. R. Wagner für die Überlassung von $Cl(CO)_4W \equiv C - C_5H_7$ -(1) sowie der Deutschen Forschungsgemeinschaft für die wohlwollende Unterstützung dieser Arbeit.

Für Bortrichlorid danken wir der Firma Elektroschmelzwerk Kempten, für Trimethylphosphan der Knappsack AG recht herzlich.

Experimenteller Teil

IR-Spektren: Perkin-Elmer Modell 21, LiF-Optik, Beckman IR 10 (KBr). – ¹H-NMR-Spektren: Jeol C 60 HL, Varian EM 360. – ¹³C- und ³¹P-NMR-Spektren: Bruker HFX 90 bei 22.63 bzw. 36.43 MHz, Auflösung 0.11 bzw. 0.08 ppm. – Massenspektren: Varian MAT 311 A, kombinierte EI/FI/FD-Quelle. Die angegebenen Massen beziehen sich auf die Isotope ⁹⁸Mo und ¹⁸⁴W.

Darstellung der Verbindungen

Alle Arbeiten wurden unter Luft- und Feuchtigkeitsausschluß in Stickstoffatmosphäre durchgeführt. Die Lösungsmittel waren getrocknet (K/Na-Legierung; P_4O_{10}) und N_2 -gesättigt. Die Ausgangsverbindungen $1d^{13}$, $3e^{14}$ und 6c, d, f, g^{11} wurden nach Literaturangaben dargestellt.

a) Carbonyl(η^5 -cyclopentadienyl)[1-(4-methylphenyl)-2-oxovinyl]bis(trimethylphosphan)molybdän (2d): 0.40 g (1.00 mmol) 5d werden in 20 ml Dichlormethan bei -30 °C mit 0.25 g (3.30 mmol) Trimethylphosphan umgesetzt. Hierbei schlägt die Farbe rasch von tiefviolett nach gelb um. Nach Entfernen des Lösungsmittels i. Hochvak, bei -30 °C nimmt man bei -60 °C mit möglichst wenig Dichlormethan auf und fällt das Produkt durch Zugabe von 2 ml Ether und 50 ml Pentan vollständig aus. Man wäscht je 2mal mit 10 ml Ether und Pentan bei -30 °C und trocknet schließlich bei dieser Temp. 10 h i. Hochvak. Gelbe Kristalle, Ausb. 0.45 g (95%).

 $C_{21}H_{30}MoO_2P_2 \ (472.4) \quad \text{Ber. C 53.40 H 6.40 Mo 20.31} \quad \text{Gef. C 53.05 H 6.46 Mo 20.40}$

b) Carbonyl(η^5 -cyclopentadienyl) (1-methyl-2-oxovinyl) bis (trimethylphosphan)wolfram (4a): Zu 1.05 g (3.16 mmol) 3a (s. unten u) in 30 ml Ether gibt man bei -40 °C 0.61 g (8.0 mmol) Trimethylphosphan. Aus der anfangs gelborangen Lösung fallen nach kurzer Zeit gelbe Kristalle aus, von denen man nach 24 h dekantiert. Anschließend kristallisiert man bei -80 °C aus Dichlormethan/ Ether/Pentan um und wäscht 3mal mit je 10 ml gekühltem Pentan. 10 h Trocknen i. Hochvak. bei -30 °C ergibt ein hellgelbes Pulver. Ausb. 1.45 g (95%).

C₁₅H₂₆O₂P₂W (484.2) Ber. C 37.20 H 5.41 P 12.79 Gef. C 36.86 H 5.23 P 12.34

c) $Carbonyl(\eta^5-cyclopentadienyl)[1-(1-cyclopenten-1-yl)-2-oxovinyl]bis(trimethylphosphan)$ wolfram (4b): Wie unter b) werden 0.98 g (2.55 mmol) 3b (s. unten v) mit 0.50 g (6.5 mmol) Trimethylphosphan zur Reaktion gebracht. Nach der Reinigung erhält man hellgelbe Kristalle.Ausb. 1.26 g (92%).

 $C_{19}H_{30}O_2P_2W$ (536.3) Ber. C 42.56 H 5.64 P 11.55 Gef. C 42.78 H 5.68 P 11.69

d) Carbonyl(η⁵-cyclopentadienyl)[1-(triphenylsilyl)-2-oxovinyl]bis(trimethylphosphan)wolfram
(4e): Analog b) gelangen 1.12 g (1.94 mmol) 3e mit 0.38 g (5.0 mmol) Trimethylphosphan zur Umsetzung. Gelbe Kristalle, Ausb. 1.31 g (93%).

C32H38O2P2SiW (728.5) Ber. C 52.75 H 5.25 P 8.50 Gef. C 52.87 H 5.25 P 8.40

e) Carbonyl(η^5 -cyclopentadienyl)[η^2 -(4-methylphenyl)ketenyl](trimethylphosphan)molybdän (5d): Die Lösung von 0.85 g (2.00 mmol) 7d in 50 ml Dichlormethan wird 10 h unter Rückfluß auf 40°C erwärmt. Dabei ändert sich die zunächst gelbe Farbe der Lösung über braun nach tiefviolett. Man engt auf wenige ml ein und fällt das Produkt unter Zugabe von 30 ml Ether aus. Zweimaliges Waschen mit je 20 ml Ether und Pentan sowie 10 h Trocknen i. Hochvak. ergibt dunkelviolettes Kristallpulver. Ausb. 0.72 g (91%).

C18H21MoO2P (396.3) Ber. C 54.56 H 5.34 Mo 24.21 Gef. C 54.33 H 5.52 Mo 24.17

f) Carbonyl(η^5 -cyclopentadienyl)(η^2 -methylketenyl)(trimethylphosphan)wolfram (6a): Bei 25°C werden 1.02 g (2.16 mmol) 4a in 30 ml Dichlormethan gelöst, wobei ein rascher Farbumschlag von gelb nach rotorange eintritt. Zusammen mit dem Lösungsmittel entfernt man mehrmals das freigesetzte Trimethylphosphan i. Hochvak., kristallisiert danach das Produkt aus Dichlormethan/Ether/Pentan um und wäscht je 3mal mit 10 ml Ether und Pentan. Nach Trocknen i. Hochvak. orangefarbenes Pulver, Ausb. 0.91 g (96.5%).

C₁₂H₁₇O₂PW (408.1) Ber. C 35.32 H 4.20 Gef. C 34.76 H 4.12

g) $Carbonyl(\eta^5-cyclopentadienyl)(\eta^2-1-cyclopenten-1-ylketenyl)(trimethylphosphan)wolfram(6b):$ Analog f) mit 1.07 g (2.0 mmol) 4b. Ziegelrote Kristalle, Ausb. 0.87 g (95%).

C16H21O2PW (460.2) Ber. C 41.76 H 4.60 P 6.73 Gef. C 41.41 H 4.59 P 6.68

h) Carbonyl(η^5 -cyclopentadienyl)[η^2 -(triphenylsilyl)ketenyl/(trimethylphosphan)wolfram (6e): 1.35 g (1.85 mmol) 4e werden wie bei f) umgesetzt. Violette Kristalle, Ausb. 1.11 g (92%).

C29H29O2SiPW (652.5) Ber. C 53.39 H 4.48 P 4.90 Gef. C 52.86 H 4.50 P 4.97

i) Dicarbonyl(η^5 -cyclopentadienyl)[1-(4-methylphenyl)-2-oxovinyl](trimethylphosphan)molybdän (7d): Eine Lösung aus 1.29 g (3.3 mmol) 5d in 30 ml Dichlormethan wird in einen 100-ml-Handautoklaven übergeführt. Dann preßt man bei -30 °C Kohlenmonoxid bis zu einem Druck von 30 bar auf. Nach 24 h fällt man das Rohprodukt mit Pentan aus und kristallisiert aus Dichlormethan/Ether/Pentan um. Dreimaliges Waschen mit je 10 ml Ether und Pentan und Trocknen i. Hochvak. bei -30 °C führt zu gelben Kristallen. Ausb. 1.32 g (95%).

C19H21M0O3P (424.3) Ber. C 53.79 H 4.99 Mo 22.61 Gef. C 53.41 H 5.14 Mo 22.13

k) $Dicarbonyl(\eta^5-cyclopentadienyl)(1-methyl-2-oxovinyl)(trimethylphosphan)wolfram (8a): Ent$ sprechend i) mit 1.26 g (3.09 mmol) 6a. Gelbe Kristalle, Ausb. 1.30 g (96%).

C₁₃H₁₇O₃PW (436.1) Ber. C 35.80 H 3.93 P 7.10 Gef. C 35.52 H 4.02 P 7.30

l) Dicarbonyl(η^5 -cyclopentadienyl)[1-(1-cyclopenten-1-yl)-2-oxovinyl](trimethylphosphan)wolfram (8b): Wie bei i) ergibt die Umsetzung von 1.09 g (2.37 mmol) 6b mit Kohlenmonoxid gelbe Kristalle. Ausb. 1.13 g (91%).

C17H21O3PW (488.2) Ber. C 41.83 H 4.34 P 6.34 Gef. C 41.73 H 4.65 P 5.95

m) Dicarbonyl(η^{5} -cyclopentadienyl)(2-oxo-I-phenylvinyl)(trimethylphosphan)wolfram (8c): Analog i) aus 0.98 g (2.09 mmol) 6c. Gelbe Kristalle, Ausb. 0.99 g (95%).

C18H19O3PW (498.2) Ber. C 43.40 H 3.84 P 6.22 Gef. C 43.12 H 3.90 P 6.14

n) Dicarbonyl(η^5 -cyclopentadienyl)[1-(4-methylphenyl)-2-oxovinyl](trimethylphosphan)wolfram (8d): In gleicher Weise wie bei i) aus 1.07 g (2.21 mmol) 6d. Gelbe Kristalle, Ausb. 1.05 g (93%).

C19H21O3PW (512.2) Ber. C 44.56 H 4.13 P 6.05 Gef. C 44.72 H 4.33 P 6.05

o) $Dicarbonyl(\eta^5-cyclopentadienyl)[2-oxo-1-(triphenylsilyl)vinyl](trimethylphosphan)wolfram (8e): Analog i) bilden sich aus 1.34 g (2.06 mmol) 6e hellgelbe Kristalle. Ausb. 1.28 g (94.6% bez. auf 6e).$

 $C_{30}H_{29}O_3SiPW$ (680.5) Ber. C 52.95 H 4.30 P 4.55 Gef. C 52.84 H 4.41 P 5.05

p) Dicarbonyl(η^5 -cyclopentadienyl)(1-ferrocenyl-2-oxovinyl)(trimethylphosphan)wolfram (8f): Die Reaktion wie unter i) ergibt aus 1.09 g (1.89 mmol) 6f gelbe Kristalle. Ausb. 1.08 g (94%).

C₂₂H₂₃FeO₃PW (606.1) Ber. C 43.60 H 3.83 Gef. C 43.40 H 3.96

q) $Dicarbonyl(\eta^5 - cyclopentadienyl)[1 - (2,4,6 - trimethylphenyl) - 2 - oxovinyl](trimethylphosphan)$ wolfram (8g): Der Einsatz von 1.10 g (2.15 mmol) 6g liefert hellgelbe Kristalle. Ausb. 1.10 g (94%).

C₂₁H₂₅O₃PW (540.3) Ber. C 46.69 H 4.66 P 5.73 Gef. C 46.48 H 4.72 P 5.93

r) **7d** aus **9d**: 1.11 g (3.00 mmol) **9d**¹³⁾ in 30 ml Ether werden bei -30° C einem Druck von 1 at CO ausgesetzt. Die ursprünglich dunkelrote Lösung entfärbt sich dabei langsam, und es fällt ein hellgelber Niederschlag aus. Nach ca. 5 h dekantiert man und wäscht das Rohprodukt je zweimal mit 20 ml Ether und Pentan. Umfällen aus CH₂Cl₂/Ether/Pentan ergibt gelbes Kristallpulver. Ausb. 0.88 g (69%).

s) 8d *aus* 10d: Eine Lösung von 0.46 g (1.00 mmol) 10d¹³⁾ in 30 ml Ether wird analog r) mit CO behandelt und aufgearbeitet. Gelbe Kristalle, Ausb. 0.44 g (86%).

t) Carbonyl(η^5 -cyclopentadienyl)[η^2 -(4-methylphenyl)ketenyl](trimethylphosphan)wolfram (6d): Analog e) wird aus 1.02 g (2 mmol) 8d Kohlenmonoxid abgespalten. Nach der Reinigung erhält man ziegelrote Kristalle, Ausb. 0.80 g (83%).

C18H21O2PW (484.2) Ber. C 44.65 H 4.37 Gef. C 44.62 H 4.34

u) Dicarbonyl(η^5 -cyclopentadienyl)(methylcarbin)wolfram (3a): Zu 2.50 g (7.00 mmol) trans-Bromotetracarbonyl(methylcarbin)wolfram in 100 ml Ether gibt man bei $-20 \,^{\circ}$ C 1.00 g (11.30 mmol) Cyclopentadienylnatrium und rührt 12 h. Anschließend filtriert man bei $-40 \,^{\circ}$ C und chromatographiert über Kieselgel mit Dichlormethan/Pentan (2:1). Die erste rote Fraktion wird aufgefangen und das Lösungsmittel i. Hochvak. entfernt. Nach Umkristallisieren aus Pentan erhält man gelborange Kristalle. Ausb. 1.74 g (75%). – IR (Ether): 1982 vs, 1929 m, 1912 m (cm⁻¹). – 13 C-NMR (CD₂Cl₂, 25°C): C_{Carbin} $\delta = 311.35$; CO 220.73, $^2J(^{183}W^{-13}C) = 197.8$ Hz: C₅H₅ 91.16; CH₃ 40.24.

C₉H₈O₂W (332.0) Ber. C 32.56 H 2.43 Gef. C 32.25 H 2.28

v) Dicarbonyl(η^5 -cyclopentadienyl)(1-cyclopenten-1-ylcarbin)wolfram (3b): Wie unter u) werden 1.90 g (4.60 mmol) trans-Tetracarbonylchloro(1-cyclopenten-1-ylcarbin)wolfram mit 0.88 g (10.00 mmol) NaC₅H₅ umgesetzt. Nach der Aufarbeitung orangefarbene Kristalle, Ausb. 1.45 g (82%). – IR (Pentan): 1986 s, 1923 s (cm⁻¹). – ¹H-NMR (CD₂Cl₂): $\delta = 5.78$ (5, s), 6.21 (1, m), 2.08–2.68 (6, m).

C13H12O2W (384.1) Ber. C 40.65 H 3.15 Gef. C 40.90 H 3.22

Literatur

- ¹⁾ V. Mitteil.: F. R. Kreißl, K. Eberl und W. Uedelhoven, Angew. Chem. 90, 908 (1978); Angew. Chem., Int. Ed. Engl. 17, 860 (1978).
- ²⁾ P. Hong, H. Sonogashira und N. Hagihara, Bull. Chem. Soc. Jpn. 39, 1821 (1966).
- ³⁾ K. Schorpp und W. Beck, Z. Naturforsch., Teil B 28, 738 (1973).
- ⁴⁾ W. A. Herrmann, Angew. Chem. 86, 345 (1974); Angew. Chem., Int. Ed. Engl. 13, 335 (1974).
- ⁵⁾ H. Hoberg und J. Korff, J. Organomet. Chem. 152, 255 (1978).
- ⁶⁾ E. T. Blues, D. Bryce-Smith, B. Kettlewell und M. Roy, J. Chem. Soc., Chem. Commun. 1973, 921.

- ⁷⁾ E. T. Blues, D. Bryce-Smith, H. Hirsch und M. J. Simons, J. Chem. Soc. D 1970, 699.
- ⁸⁾ E. T. Blues, D. Bryce-Smith, I. W. Lawston und G. D. Wall, J. Chem. Soc., Chem. Commun. 1974, 513.
- 9) E. T. Blues, D. Bryce-Smith und I. W. Lawston, Gold Bull. 9, 88 (1976).
- ¹⁰⁾ F. R. Kreißl, A. Frank, U. Schubert, T. L. Lindner und G. Huttner, Angew. Chem. 88, 649 (1976); Angew. Chem., Int. Ed. Engl. 15, 632 (1976).
- ¹¹⁾ F. R. Kreißl, K. Eberl und W. Uedelhoven, Chem. Ber. 110, 3782 (1977).
- ¹²⁾ F. R. Kreiβl, P. Friedrich und G. Huttner, Angew. Chem. 89, 110 (1977); Angew. Chem., Int. Ed. Engl. 16, 102 (1977).
- ¹³⁾ W. Uedelhoven und F. R. Kreißl, unveröffentlichte Ergebnisse.
- ¹⁴⁾ E. O. Fischer, H. Hollfelder, P. Friedrich, F. R. Kreißl und G. Huttner, Angew. Chem. 89, 416 (1977); Angew. Chem., Int. Ed. Engl. 16, 401 (1977).
- ¹⁵⁾ F. R. Kreißl, W. Uedelhoven und K. Eberl, Angew. Chem. 90, 908 (1978); Angew. Chem., Int. Ed. Engl. 17, 859 (1978).
- ¹⁶⁾ K. Eberl, W. Uedelhoven und F. R. Kreißl, unveröffentlichte Ergebnisse.
- ¹⁷⁾ R. K. Harris, Can. J. Chem. 42, 2275 (1964).
- 18) D. A. Redfield, J. H. Nelson und L. W. Cary, J. Inorg. Nucl. Chem. Lett. 10, 727 (1974).
- ¹⁹⁾ J. Firl und W. Runge, Angew. Chem. 85, 671 (1973); Angew. Chem., Int. Ed. Engl. 12, 662 (1973).
- ²⁰⁾ J. Firl und W. Runge, Z. Naturforsch., Teil B 29, 393 (1974).
- ²¹⁾ J. Mason, J. Chem. Soc. A 1971, 1038.
- ²²⁾ Y. K. Grishin, S. V. Ponomarev und S. A. Lebedev, Zh. Org. Khim. 10, 404 (1974) [Chem. Abstr. 80,107439d (1974)].
- ²³⁾ G. E. Maciel, J. Phys. Chem. 69, 1947 (1965).
- ²⁴⁾ Y. K. Grishin, N. M. Sergeyev und Y. A. Ustynyuk, Org. Magn. Reson. 4, 377 (1972).
- ²⁵⁾ E. O. Fischer, H. Hollfelder, P. Friedrich, F. R. Kreißl und G. Huttner, Chem. Ber. 110, 3467 (1977).
- ²⁶⁾ D. Rosenberg und W. Drenth, Tetrahedron 27, 3893 (1971).
- ²⁷⁾ D. M. White und G. C. Levy, Macromolecules 5, 526 (1972).
- ²⁸⁾ E. O. Fischer, H. Hollfelder und F. R. Kreißl, Chem. Ber. 112, 2177 (1979).
- ²⁹⁾ J. F. Nixon und A. Pidcock, Ann. Rev. NMR Spectrosc. 2, 363 (1969).
- ³⁰⁾ N. F. Ramsey, Phys. Rev. 91, 303 (1953).
- ³¹⁾ W. McFarlane und D. S. Rycroft, J. Chem. Soc., Chem. Commun. 1973, 336.
- ³²⁾ J. A. Pople und D. Santry, Mol. Phys. 8, 1 (1964).
- ³³⁾ C. J. Jameson und H. S. Gutowsky, J. Chem. Phys. 51, 2790 (1969).
- ³⁴⁾ H. M. McConnell, J. Chem. Phys. 24, 460 (1956).
- 35) S. O. Grim, R. L. Keiter und W. McFarlane, Inorg. Chem. 6, 1133 (1967).
- ³⁶⁾ Zum abweichenden Verhalten vgl. S. O. Grim und D. A. Wheatland, Inorg. Nucl. Chem. Lett. 4, 187 (1968).
- ³⁷⁾ F. H. Köhler, H. J. Kalder und E. O. Fischer, J. Organomet. Chem. 85, C 19 (1975).
- ³⁸⁾ E. O. Fischer und B. Dorrer, Chem. Ber. 107, 1156 (1974); B. Dorrer und E. O. Fischer, ebenda 107, 2683 (1974).
- ³⁹⁾ W. A. Herrmann und J. Plank, Angew. Chem. 90, 555 (1978); Angew. Chem., Int. Ed. Engl. 17, 525 (1978).

[20/79]